Buildings Evolve. Your Building Management System Should, too.

July 13, 2016

In 1992, I co-authored a chapter for the second edition of the Energy Management Handbook titled “Energy Management Control Systems.” In it I described, among other ideas and practices, the importance of software to facilitate the ongoing success of an efficient energy management control system (EMCS).

We’ve seen a host of innovation in the energy industry during the 25 years since I originally published this chapter, but the principles I introduced remain sound.

Today the combination of automated building controls and up-to-date software can lead to an organization earning significant revenue through demand response participation. The key to optimizing demand response and maximizing your earnings comes down to maintaining your building management system so it can become an efficient tool for demand response.

Building usage and programming logic should evolve in lockstep.
Commercial building usage and environments continuously change throughout their lifetime. Activities, processes, schedules, space configuration and populations vary from time to time. When Building Management Systems (BMS) are first installed, the software programing logic (i.e. control sequencing, set points, etc.) is configured for building usage at that time.

It is essential that programming logic be kept current with any changes in a building’s use and environment. Failure to do so can result in control sequences and set points being over ridden, which negates the benefits envisioned by the intended energy management strategies.

Certain components of a building management system require regular maintenance.
Occupancy schedules need to be managed on a day-to-day basis at buildings that have sporadic after-hours occupancy, i.e. schedule a specific zone to be occupied for specific hours on a specific day. HVAC control sequences, set points, and zonal environmental control need to be periodically adjusted to adapt to changing usage and conditions.

Crucial components are often overlooked.
BMS maintenance agreements are a discretionary cost. These agreements typically focus on system hardware, which is perceived to be more impactful on the budget than software maintenance.

However, inefficient energy management can have a significantly greater impact on the budget. Vendors provide training for in-house staff on minimal software maintenance, such as—for example—changing set points and scheduling after-hours events, during initial installation.

This maintenance feature disappears when trained staff move on; however, changes to control sequencing require the use of vendor software engineers which require additional expenditures. Building staff are alert to hardware maintenance needs but tend not to recognize when software maintenance is needed.

A well-maintained building management system is advantageous for optimized demand response.
Demand response can be implemented with minimal disruption to building environmental conditions and usage when BMS programming logic is maintained current, whereas building conditions and usage in a building with a poorly maintained system can become uncomfortable causing disruption to building activity when responding to demand response events.

Demand response payments provide a source of funding for incorporating demand response sequencing and software maintenance in the BMS vendor’s ongoing maintenance agreement. CPower can advise on demand response control logic specific to each ISO.

Maintaining BMS software current not only ensures energy savings intended when the system was first installed but also provides a solid platform to reap substantial energy cost offsets afforded by participating in demand response. CPower can work with building managers to optimize the financial benefits that can accrue from participating in demand response by interfacing with the BMS to automate demand response event action and enhance performance with minimal impact on building environment.

Contact us and to find out if your building’s BMS is in need of an update, or to learn how you can earn revenue with demand response optimized through optimization.

Published by

Avatar

William Cratty

William Cratty has worked in the energy industry since 1965, and has been a technical sales executive for CPower since 2007. He holds a bachelor’s degree in engineering from the US Merchant Marine Academy and has been granted three US patents for his design of a high availability power system. William grew up on the same street as one of the most famous American singers of the 20th century, but he only tells that story in person.

Avatar
William Cratty

William Cratty has worked in the energy industry since 1965, and has been a technical sales executive for CPower since 2007. He holds a bachelor’s degree in engineering from the US Merchant Marine Academy and has been granted three US patents for his design of a high availability power system. William grew up on the same street as one of the most famous American singers of the 20th century, but he only tells that story in person.

Skip to content